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Proposed solution: Let the plant-side verify the control signal, 
i.e., the computation of controller!

How?
Naive Sol: Re-executing the controller computation (    burden on the plant-side)

Proposed Sol: Adapt the Verifiable Computation (VC) from complexity theory and cryptography

- Controller provides a proof that its computation is correct
- : Faster verification than re-execution
- : Overhead on the controller (for generation of the proof) Goal: optimized VC for 

Controller Computation
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The Target - Linear Dynamic System (with Integers)

Consider a Linear Dynamic System with Discrete-time Controller
- Controller’s computation 

𝑥!"#
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C D

𝑥!
𝑦!

A, B, C, D: matrices over ℝ,       𝑥!: state of the controller at time 𝑡, 
𝑥⃗, 𝑢, 𝑦⃗: vectors over ℝ, 𝑢!: controller signal,

𝑦!: sensor signal.
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Consider a Linear Dynamic System with Discrete-time Controller
- Controller’s computation 

𝑥!"#
𝑢!

= A B
C D

𝑥!
𝑦!

A, B, C, D: matrices over ℝ,       𝑥!: state of the controller at time 𝑡, 
𝑥⃗, 𝑢, 𝑦⃗: vectors over ℝ, 𝑢!: controller signal,

𝑦!: sensor signal.

* We can assume that all values are over ℤ with certain bound, i.e., over ℤ- ≔ ⁄ℤ 𝑝ℤ
(Integers modulo a prime 𝑝)
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Conversion of B, C, and D into integer matrices: done by scaling & truncation.
Conversion of A into integer matrix w/o scaling & truncation is needed and is possible.
Details are presented in the session (FrA09.3). 
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What is Verifiable Computation (VC)?

Goal: Verify the result of delegated computation (𝐹).

Algorithms (𝜆: security parameter):

● KeyGen 𝐹, 𝜆 → 𝐸𝐾! & 𝑉𝐾! ; 

generate Evaluation Key & Verification Key for 𝐹

● Compute & Proof Gen 𝐸𝐾! , 𝑥 → (𝑦, 𝜋");

compute 𝑦 = 𝐹(𝑥) and a proof 𝜋"

● Verify (𝑉𝐾! , 𝑥, 𝑦, 𝜋") → 𝑎𝑐𝑐𝑒𝑝𝑡, 𝑟𝑒𝑗𝑒𝑐𝑡

Requirements:

(Soundness) With 𝑦 ≠ 𝐹 𝑥 , an adversary can not forge a proof 𝜋" s.t. Verify 𝑉𝐾! , 𝑥, 𝑦, 𝜋" = 𝑎𝑐𝑐𝑒𝑝𝑡

(Efficiency) The function Verify should be faster than computing 𝑦 = 𝐹(𝑥)
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Freivalds’ algorithm: a VC for Matrix Multiplication

Goal: Verify a matrix-vector multiplication (𝑥⃗ ∈ ℤ-3 → 𝐹𝑥⃗) for a matrix 𝐹 ∈ ℤ-4×3

𝒱eri;ier 𝑟, 𝑓 𝒫rover (𝐹)

2. Compute
𝑦⃗ = 𝐹𝑥⃗

3. Check if 
𝑟 ⋅ 𝑦⃗′ = 𝑓 ⋅ 𝑥⃗

1. Input 𝑥⃗

2. Result 𝑦⃗′

0. 𝒱eri;ier prepares 𝑟 ∈ ℤ#$ and 𝑓 ≔ 𝑟%𝐹
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Goal: Verify a matrix-vector multiplication (𝑥⃗ ∈ ℤ-3 → 𝐹𝑥⃗) for a matrix 𝐹 ∈ ℤ-4×3
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3. Check if 
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1. Input 𝑥⃗

2. Result 𝑦⃗′

0. 𝒱eri;ier prepares 𝑟 ∈ ℤ#$ and 𝑓 ≔ 𝑟%𝐹

Freivalds’ algorithm satisfies:

(Soundness) If 𝑦⃗& ≠ 𝐹𝑥⃗, the check gives that
𝑟 ⋅ 𝑦⃗& ≠ 𝑓 ⋅ 𝑥⃗ with high probability ( 1 − $

#
)

(Efficiency) Checking if  𝑟 ⋅ 𝑦⃗& = 𝑓 ⋅ 𝑥⃗ takes 2𝑛 mults.

Computing     𝑦⃗ = 𝐹𝑥⃗ takes 𝑛𝑚 mults.

≪

∵ for nonzero 𝑣⃗ ∈ ℤ#$ , 𝑟 ⋅ 𝑣⃗ = 0 with probability $
#

∗ 𝑟 and 𝑓 must	be	hidden from	𝒫!	



Assume, with 𝜆 (security parameter), computation resource of an adversary 𝒜 is limited by 2' operations.

● Consider a Finite Group 𝐺 = ( 𝑔( (∈ℤ!
, ⋅ ) of order 𝑝 ≥ 2', then

- for 𝑥, 𝑦 ∈ ℤ#,  𝑔+ ⋅ 𝑔" = 𝑔 +," -./ #

- e.g.) 𝐺 = 2(
(∈ℤ"

⊂ ℤ0 with ⋅ as the multiplication in ℤ0

● Discrete Logarithm assumption (DL)
- Given 𝑔 and 𝑔+ (𝑥 ← ℤ#), 𝒜 can not retrieve 𝑥
- variant: Given 𝑔 and 𝑔+⃗ ≔ (𝑔+# , 𝑔+$ , … , 𝑔+%) (𝑥⃗ ← ℤ#$), 𝒜 can not retrieve 𝑦⃗ ≠ 0 s. t. 𝑥⃗ ⋅ 𝑦⃗ = 0

A quick introduction to

Finite Group and Cryptographic Assumptions
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Design Rationale
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then (with high probability), 
two equations do not hold!

(Freivalds’ Algorithm)

* 𝑟, 𝑠,𝑎⃗, 𝑏⃗, 𝑐, 𝑑 must be hidden
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VC for Controller Computation – Second idea
Goal: Verify the Computation    𝑟 ⋅ 𝑥!"# = 𝑎⃗ ⋅ 𝑥! + 𝑏 ⋅ 𝑦! without 𝑥QRS nor 𝑥Q

𝑠 ⋅ 𝑢! = 𝑐 ⋅ 𝑥! + 𝑑 ⋅ 𝑦!

II. Let the controller compute the inner-product (but controller must not know 𝑟, 𝑎⃗, 𝑐)
by applying Group-based Cryptography (G = 𝑔 of order 𝒑,  𝑥 → 𝑔T)
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It is equivalent to the computation 

given that 𝑔#, 𝑔-, 𝑔. are as above 

Problem! 𝒫 (or 𝒜) can pass the check (by 𝒱) with 𝑢2
& ≠ 𝑢2 by sending different 𝑔3, 𝑔4, 𝑔5 from what was asked.

* 𝑔*⃗ , 𝑔+, 𝑔,⃗ hide 𝑟, 𝑎⃗, 𝑐 from 𝒫 (or 𝒜) by DL-assumption.

(𝑔, ⋅ 𝑔$ = 𝑔,"$345 𝒑)



VC for Controller Computation – Third idea
Goal: Enforce 𝒫 (or 𝒜) to send 𝑔S: = 𝑔W⃗⋅T678 , 𝑔X: = 𝑔Y⋅T6 , and 𝑔Z: = 𝑔[⃗⋅T6

III. Use the Cryptographic Assumption (n-PKE assumption)
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VC for Controller Computation – Third idea
Goal: Enforce 𝒫 (or 𝒜) to send 𝑔S: = 𝑔W⃗⋅T678 , 𝑔X: = 𝑔Y⋅T6 , and 𝑔Z: = 𝑔[⃗⋅T6

III. Use the Cryptographic Assumption (n-PKE assumption)

- 𝒱eri>ier (plant-side) sends 𝑔(⃗, 𝑔), 𝑔*⃗, and 𝑔7(⃗, 𝑔8), 𝑔9*⃗, and 𝑔):*⃗, 𝑔;():*⃗) to 𝒫rover (controller)

- 𝒫 computes and sends 𝑔#: = 𝑔(⃗⋅,!"# , 𝑔#& ≔ 𝑔7(⃗⋅,!"#

𝑔-: = 𝑔)⋅,! , 𝑔-& ≔ 𝑔8)⋅,!

𝑔.: = 𝑔*⃗⋅,! , 𝑔.& ≔ 𝑔9*⃗⋅,! ,								𝑔-:. ≔ 𝑔 ):*⃗ ⋅,! , 𝑔-:.′ ≔ 𝑔; ):*⃗ ⋅,!

- 𝒱 checks if
𝑔#
7 = 𝑔#& , 𝑔-8 = 𝑔-& , 𝑔.

9 = 𝑔.& , 𝑔-:.; = 𝑔-:.& , and 𝑔- = 𝑔. ⋅ 𝑔-:.

𝑔# = 𝑔(⃗⋅># , 𝑔- = 𝑔)⋅>$ , 𝑔. = 𝑔*⃗⋅>% , 𝑔-:.
):*⃗ ⋅>& for some  𝑧#, 𝑧-, 𝑧., 𝑧?. 

(n-PKE assumption) guarantees:

(𝑔- = 𝑔. ⋅ 𝑔-:.) guarantees: 𝑧- = 𝑧. = 𝑧?
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& such that                    note: 𝒜 knows that        

𝑟 ⋅ 𝑧# = 𝑎⃗ ⋅ 𝑧- + 𝑏 ⋅ 𝑦! 𝑟 ⋅ 𝑥!"# = 𝑎⃗ ⋅ 𝑥! + 𝑏 ⋅ 𝑦!
𝑠 ⋅ 𝑢!′ = 𝑐 ⋅ 𝑧- + 𝑑 ⋅ 𝑦! 𝑠 ⋅ 𝑢! = 𝑐 ⋅ 𝑥! + 𝑑 ⋅ 𝑦!

Then, by subtracting above equations (noting that 𝑎⃗ ≔ 𝑟%𝐴, 𝑐 ≔ 𝑠%𝐶),
𝒜 gets

𝑟 ⋅ 𝑧# − 𝑥!"# − 𝐴 𝑧- − 𝑥! = 0
𝑠 ⋅ 𝑢!′ − 𝑢! − 𝐶(𝑧- − 𝑥!) = 0
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Proposed VC for Controller Computation – Summary

Goal: Verify the Controller’s Computation, i.e., 𝑥&'(𝑢& = A B
C D

𝑥&
𝑦&

.

- It suffices to check that N⃗⋅+-.#&
9⃗⋅O-&

= P⋅+-,Q⋅"-
R⃗⋅+-,S⃗⋅"-

from Freivalds’ algorithm.

- In fact, it suffices to check that  e8
eT⋅U6V = e=⋅eW⋅X6

eY⋅eZ⋅X6

and that 𝑔3, 𝑔4, 𝑔5 are well-generated from 𝐸𝐾 ≔ (𝑔N⃗ , 𝑔P , 𝑔R⃗ , 𝑔[N⃗ , 𝑔:P , 𝑔\R⃗ , 𝑔P]R⃗ , 𝑔^ P]R⃗ ).
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● Soundness: If 𝒜 can deceive the 𝒱eri;ier with incorrect signal 𝑢2
& ≠ 𝑢2, 

then 𝒜 breaks one of the cryptographic assumptions (DL or n-PKE)!
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● Soundness: If 𝒜 can deceive the 𝒱eri;ier with incorrect signal 𝑢2
& ≠ 𝑢2, 
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● Efficiency (# of ops): Verify (𝑢2)  ≪ Computation of 𝑢2 and 𝑥2,3

∝ 𝑢! , 𝑦!
+ const for checking 𝑔@&𝑠

∝ 𝑥! ⋅ (|𝑥!| + 𝑦! )



Conclusion

● Proposed Verifiable Computation enables a plant-side to detect all possible 
modifications on the control signal of linear dynamic feedback controllers!
=> Secure the system from most adversarial attacks outside the plant-side.

● On-going / Further Work

- Implementation

- With other Cryptographic Assumptions: DL → Post-Quantum (Lattices, Hash)

- More Functionalities: 
1) Hiding Controller’s Information (e.g., A,B,C,D) via zero-knowledge proof

2) Handling other Dynamic System (w/ additional input from the controller)

Controller signal

!
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