Authenticated Computation of Control Signal from Dynamic Controllers

Jung Hee Cheon¹⁾, **Dongwoo Kim**¹⁾, Junsoo Kim²⁾, Seungbeom Lee²⁾, Hyungbo Shim²⁾

¹⁾ IMDARC, Department of Mathematical Sciences, Seoul National University, Korea ²⁾ ASRI, Department of Electrical and Computer Engineering, Seoul National University, Korea

Security Issues on Networked Control System

Networked Control System with Remote Controller

Security Issues on Networked Control System

Networked Control System with Remote Controller

Compromise on the signal / controller Misbehavior / Failure of the system

Proposed solution: Let the plant-side verify the control signal,

i.e., the computation of controller! Naive Sol: Re-executing the controller computation (burden on the plant-side)

Proposed solution: Let the plant-side verify the control signal, i.e., the computation of controller! How? Naive Sol: Re-executing the controller computation (burden on the plant-side)

Proposed Sol: Adapt the Verifiable Computation (VC) from complexity theory and cryptography

Proposed solution: Let the plant-side verify the control signal, i.e., the computation of controller! How? Naive Sol: Re-executing the controller computation (🕿 burden on the plant-side)

Proposed Sol: Adapt the Verifiable Computation (VC) from complexity theory and cryptography

- Controller provides a proof that its computation is correct

Proposed solution: Let the plant-side verify the control signal, i.e., the computation of controller!

Naive Sol: Re-executing the controller computation (: burden on the plant-side)

Proposed Sol: Adapt the Verifiable Computation (VC) from complexity theory and cryptography

- Controller provides a proof that its computation is correct
- . Faster verification than re-execution
- :: Overhead on the controller (for generation of the proof)

Proposed solution: Let the plant-side verify the control signal, i.e., the computation of controller! How?

Naive Sol: Re-executing the controller computation (🙁 burden on the plant-side)

Proposed Sol: Adapt the Verifiable Computation (VC) from complexity theory and cryptography

- Controller provides a proof that its computation is correct
- . Faster verification than re-execution
- :: Overhead on the controller (for generation of the proof)

Goal: optimized VC for Controller Computation

The Target - Linear Dynamic System (with Integers)

Consider a Linear Dynamic System with Discrete-time Controller

- Controller's computation

$$\begin{pmatrix} \overrightarrow{x_{t+1}} \\ \overrightarrow{u_t} \end{pmatrix} = \begin{pmatrix} A & B \\ C & D \end{pmatrix} \begin{pmatrix} \overrightarrow{x_t} \\ \overrightarrow{y_t} \end{pmatrix}$$

A, B, C, D: matrices over \mathbb{R} , $\vec{x}, \vec{u}, \vec{y}$: vectors over \mathbb{R} , $\vec{x_t}$: state of the controller at time *t*, $\vec{u_t}$: controller signal, $\vec{y_t}$: sensor signal.

The Target - Linear Dynamic System (with Integers)

Consider a Linear Dynamic System with Discrete-time Controller

Conversion of *B*, *C*, and *D* into integer matrices: done by scaling & truncation. Conversion of *A* into integer matrix w/o scaling & truncation is needed and is possible. Details are presented in the session (FrA09.3).

Preliminaries

Verifiable Computation & Cryptography

Goal: Verify the result of delegated computation (*F*).

Algorithms (λ : security parameter):

• **KeyGen** $(F, \lambda) \rightarrow EK_F \& VK_F$;

generate Evaluation Key & Verification Key for F

• Compute & Proof Gen $(EK_F, x) \rightarrow (y, \pi_y);$

compute y = F(x) and a proof π_y

• **Verify** $(VK_F, x, y, \pi_y) \rightarrow \{accept, reject\}$

Requirements:

(Soundness) With $y \neq F(x)$, an adversary can **not** forge a proof π_y s.t. **Verify** $(VK_F, x, y, \pi_y) = accept$ (*Efficiency*) The function **Verify** should be faster than computing y = F(x)

Goal: Verify the result of delegated computation (*F*).

Algorithms (λ : security parameter):

• **KeyGen** $(F, \lambda) \rightarrow EK_F \& VK_F$;

generate Evaluation Key & Verification Key for F

• **Compute & Proof Gen** $(EK_F, x) \rightarrow (y, \pi_y);$

compute y = F(x) and a proof π_y

• **Verify** $(VK_F, x, y, \pi_y) \rightarrow \{accept, reject\}$

Requirements:

(Soundness) With $y \neq F(x)$, an adversary can **not** forge a proof π_y s.t. **Verify** $(VK_F, x, y, \pi_y) = accept$ (*Efficiency*) The function **Verify** should be faster than computing y = F(x)

Goal: Verify the result of delegated computation (*F*).

Algorithms (λ : security parameter):

• **KeyGen** $(F, \lambda) \rightarrow EK_F \& VK_F$;

generate Evaluation Key & Verification Key for F

• **Compute & Proof Gen** $(EK_F, x) \rightarrow (y, \pi_y);$

compute y = F(x) and a proof π_y

• **Verify** $(VK_F, x, y, \pi_y) \rightarrow \{accept, reject\}$

Requirements:

Goal: Verify the result of delegated computation (*F*).

Algorithms (λ : security parameter):

• **KeyGen** $(F, \lambda) \rightarrow EK_F \& VK_F$;

generate Evaluation Key & Verification Key for F

• **Compute & Proof Gen** $(EK_F, x) \rightarrow (y, \pi_y);$

compute y = F(x) and a proof π_y

• **Verify** $(VK_F, x, y, \pi_y) \rightarrow \{accept, reject\}$

 KeyGen (F, λ)

 Image: Strain Str

Requirements:

(Soundness) With $y \neq F(x)$, an adversary can **not** forge a proof π_y s.t. **Verify** $(VK_F, x, y, \pi_y) = accept$ (*Efficiency*) The function **Verify** should be faster than computing y = F(x)

Goal: Verify the result of delegated computation (*F*).

Algorithms (λ : security parameter):

• **KeyGen** $(F, \lambda) \rightarrow EK_F \& VK_F$;

generate Evaluation Key & Verification Key for F

• **Compute & Proof Gen** $(EK_F, x) \rightarrow (y, \pi_y);$

compute y = F(x) and a proof π_y

• **Verify** $(VK_F, x, y, \pi_y) \rightarrow \{accept, reject\}$

Requirements:

(Soundness) With $y \neq F(x)$, an adversary can **not** forge a proof π_y s.t. **Verify** $(VK_F, x, y, \pi_y) = accept$ (*Efficiency*) The function **Verify** should be faster than computing y = F(x)

Freivalds' algorithm: a VC for Matrix Multiplication

Goal: Verify a matrix-vector multiplication $(\vec{x} \in \mathbb{Z}_p^m \to F\vec{x})$ for a matrix $F \in \mathbb{Z}_p^{n \times m}$

Freivalds' algorithm: a VC for Matrix Multiplication

Goal: Verify a matrix-vector multiplication $(\vec{x} \in \mathbb{Z}_p^m \to F\vec{x})$ for a matrix $F \in \mathbb{Z}_p^{n \times m}$

Freivalds' algorithm satisfies:

(Soundness) If
$$\vec{y}' \neq F\vec{x}$$
, the check gives that
 $\vec{r} \cdot \vec{y}' \neq \vec{f} \cdot \vec{x}$ with high probability ($1 - \frac{n}{p}$
 \because for nonzero $\vec{v} \in \mathbb{Z}_p^n$, $\vec{r} \cdot \vec{v} = 0$ with probability $\frac{n}{p}$

(*Efficiency*) Checking if $\vec{r} \cdot \vec{y}' = \vec{f} \cdot \vec{x}$ takes 2n mults. $\hat{\nabla}$ Computing $\vec{y} = F\vec{x}$ takes nm mults.

Finite Group and Cryptographic Assumptions

Assume, with λ (security parameter), computation resource of an adversary \mathcal{A} is limited by 2^{λ} operations.

- Consider a Finite Group G = ({gⁱ}_{i∈Z_p}, ·) of order p ≥ 2^λ, then
 for x, y ∈ Z_p, g^x · g^y = g^(x+y mod p)
 e.g.) G = {2ⁱ}_{i∈Z₃} ⊂ Z₇ with · as the multiplication in Z₇
- Discrete Logarithm assumption (DL)

Finite Group and Cryptographic Assumptions

Assume, with λ (security parameter), computation resource of an adversary \mathcal{A} is limited by 2^{λ} operations.

- Consider a Finite Group G = ({gⁱ}_{i∈ℤp}, ·) of order p ≥ 2^λ, then
 for x, y ∈ ℤ_p, g^x · g^y = g^(x+y mod p)
 e.g.) G = {2ⁱ}_{i∈ℤ₃} ⊂ ℤ₇ with · as the multiplication in ℤ₇
- Discrete Logarithm assumption (DL)
 - Given g and g^x ($x \leftarrow \mathbb{Z}_p$), \mathcal{A} can not retrieve x
 - variant: Given g and $g^{\vec{x}} \coloneqq (g^{x_1}, g^{x_2}, ..., g^{x_n})$ $(\vec{x} \leftarrow \mathbb{Z}_p^n)$, \mathcal{A} can not retrieve $\vec{y} \neq \vec{0}$ s.t. $\vec{x} \cdot \vec{y} = 0$

Proposed VC for Controller Computation

Design Rationale

Goal: Verify the Controller's Computation, i.e., $\begin{pmatrix} \vec{x_{t+1}} \\ \vec{u_t} \end{pmatrix} = \begin{pmatrix} A & B \\ C & D \end{pmatrix} \begin{pmatrix} \vec{x_t} \\ \vec{y_t} \end{pmatrix}$

I. Apply Freivalds' Algorithm (Matrix-vector mults → Inner-product of vectors)

Goal: Verify the Controller's Computation, i.e., $\begin{pmatrix} \overline{x_{t+1}} \\ \overline{u_t} \end{pmatrix} = \begin{pmatrix} A & B \\ C & D \end{pmatrix} \begin{pmatrix} \overline{x_t} \\ \overline{y_t} \end{pmatrix}$

I. Apply Freivalds' Algorithm (Matrix-vector mults → Inner-product of vectors)

- \mathcal{V} erifier (plant-side) prepares \vec{r}, \vec{s} and $\vec{a} \coloneqq \vec{r}^T A$, $\vec{b} \coloneqq \vec{r}^T B$, $\vec{c} \coloneqq \vec{s}^T C$, $\vec{d} \coloneqq \vec{s}^T D$, - \mathcal{P} rover (controller) computes and sends $\vec{x_{t+1}}'$ and $\vec{u_t}'$ to \mathcal{V} - \mathcal{V} checks if $\vec{r} \cdot \vec{x_{t+1}}' = \vec{a} \cdot \vec{x_t} + \vec{b} \cdot \vec{y_t}$ (Freivalds' Algorithm) $\vec{s} \cdot \vec{u_t}' = \vec{c} \cdot \vec{x_t} + \vec{d} \cdot \vec{y_t}$ (Freivalds' Algorithm) $\vec{s} \cdot \vec{u_t}' = \vec{c} \cdot \vec{x_t} + \vec{d} \cdot \vec{y_t}$ (Freivalds' Algorithm) $\vec{s} \cdot \vec{u_t}' = \vec{c} \cdot \vec{x_t} + \vec{d} \cdot \vec{y_t}$ (Freivalds' Algorithm) $\vec{s} \cdot \vec{u_t}' = \vec{c} \cdot \vec{x_t} + \vec{d} \cdot \vec{y_t}$ (Freivalds' Algorithm) $\vec{s} \cdot \vec{u_t}' = \vec{c} \cdot \vec{x_t} + \vec{d} \cdot \vec{y_t}$ (Freivalds' Algorithm) $\vec{s} \cdot \vec{u_t}' = \vec{c} \cdot \vec{x_t} + \vec{d} \cdot \vec{y_t}$ (Freivalds' Algorithm) $\vec{s} \cdot \vec{u_t}' = \vec{c} \cdot \vec{x_t} + \vec{d} \cdot \vec{y_t}$ (Freivalds' Algorithm) $\vec{s} \cdot \vec{u_t}' = \vec{c} \cdot \vec{x_t} + \vec{d} \cdot \vec{y_t}$ (Freivalds' Algorithm) $\vec{s} \cdot \vec{u_t}' = \vec{c} \cdot \vec{x_t} + \vec{d} \cdot \vec{y_t}$ (Freivalds' Algorithm) $\vec{s} \cdot \vec{u_t}' = \vec{c} \cdot \vec{x_t} + \vec{d} \cdot \vec{y_t}$ (Freivalds' Algorithm) $\vec{s} \cdot \vec{u_t}' = \vec{c} \cdot \vec{x_t} + \vec{d} \cdot \vec{y_t}$ (Freivalds' Algorithm) $\vec{s} \cdot \vec{u_t}' = \vec{c} \cdot \vec{x_t} + \vec{d} \cdot \vec{y_t}$ (Freivalds' Algorithm) $\vec{s} \cdot \vec{u_t}' = \vec{c} \cdot \vec{x_t} + \vec{d} \cdot \vec{y_t}$ (Freivalds' Algorithm) $\vec{s} \cdot \vec{u_t}' = \vec{c} \cdot \vec{x_t} + \vec{d} \cdot \vec{y_t}$ (Freivalds' Algorithm) $\vec{s} \cdot \vec{u_t}' = \vec{c} \cdot \vec{x_t} + \vec{d} \cdot \vec{y_t}$ (Freivalds' Algorithm) $\vec{s} \cdot \vec{u_t}' = \vec{c} \cdot \vec{x_t} + \vec{d} \cdot \vec{y_t}$ (Freivalds' Algorithm) $\vec{s} \cdot \vec{u_t}' = \vec{c} \cdot \vec{x_t} + \vec{d} \cdot \vec{y_t}$ (Freivalds' Algorithm) $\vec{s} \cdot \vec{u_t}' = \vec{c} \cdot \vec{x_t} + \vec{d} \cdot \vec{y_t}$ (Freivalds' Algorithm) $\vec{s} \cdot \vec{u_t}' = \vec{c} \cdot \vec{x_t} + \vec{d} \cdot \vec{y_t}$ (Freivalds' Algorithm) $\vec{s} \cdot \vec{u_t}' = \vec{c} \cdot \vec{x_t} + \vec{d} \cdot \vec{y_t}$ (Freivalds' Algorithm) $\vec{s} \cdot \vec{s} \cdot \vec{s$

Goal: Verify the Controller's Computation, i.e., $\begin{pmatrix} \overline{x_{t+1}} \\ \overline{u_t} \end{pmatrix} = \begin{pmatrix} A & B \\ C & D \end{pmatrix} \begin{pmatrix} \overline{x_t} \\ \overline{y_t} \end{pmatrix}$

I. Apply Freivalds' Algorithm (Matrix-vector mults → Inner-product of vectors)

Problem! The state $\vec{x_t}$ must be transferred from the controller to the plant-side at each time t.

Goal: Verify the Computation $\vec{r} \cdot \vec{x_{t+1}} = \vec{a} \cdot \vec{x_t} + \vec{b} \cdot \vec{y_t}$ without $\vec{x_{t+1}}$ nor $\vec{x_t}$

II. Let the controller compute the inner-product (but controller must not know $\vec{r}, \vec{a}, \vec{c}$) by applying Group-based Cryptography ($G = \langle g \rangle$ of order $p, x \to g^x$)

 $\vec{s} \cdot \vec{u_t} = \vec{c} \cdot \vec{x_t} + \vec{d} \cdot \vec{y_t}$

Goal: Verify the Computation $\vec{r} \cdot \vec{x_{t+1}} = \vec{a} \cdot \vec{x_t} + \vec{b} \cdot \vec{y_t}$ without $\vec{x_{t+1}}$ nor $\vec{x_t}$ $\vec{s} \cdot \vec{u_t} = \vec{c} \cdot \vec{x_t} + \vec{d} \cdot \vec{y_t}$

II. Let the controller compute the inner-product (but controller must not know $\vec{r}, \vec{a}, \vec{c}$) by applying Group-based Cryptography ($G = \langle g \rangle$ of order $p, x \to g^x$)

- \mathcal{V} erifier (plant-side) prepares $g^{\vec{r}}$, $g^{\vec{a}}$, and $g^{\vec{c}}$, sends them to \mathcal{P} rover (controller).

* $g^{\vec{r}}, g^{\vec{a}}, g^{\vec{c}}$ hide $\vec{r}, \vec{a}, \vec{c}$ from \mathcal{P} (or \mathcal{A}) by DL-assumption.

- \mathcal{P} computes and sends $g_1 := g^{\vec{r} \cdot \overrightarrow{x_{t+1}}}$, $g_2 := g^{\vec{a} \cdot \overrightarrow{x_t}}$, $g_3 := g^{\vec{c} \cdot \overrightarrow{x_t}}$, and $\overrightarrow{u_t}'$ to \mathcal{V} .

-
$$\mathcal{V}$$
 checks if $g_1 = g_2 \cdot g^{\vec{b} \cdot \vec{y_t}}$
 $g^{\vec{s} \cdot \vec{u_t}'} = g_3 \cdot g^{\vec{d} \cdot \vec{y_t}}$

Goal: Verify the Computation $\vec{r} \cdot \vec{x_{t+1}} = \vec{a} \cdot \vec{x_t} + \vec{b} \cdot \vec{y_t}$ without $\vec{x_{t+1}}$ nor $\vec{x_t}$

II. Let the controller compute the inner-product (but controller must not know $\vec{r}, \vec{a}, \vec{c}$) by applying Group-based Cryptography ($G = \langle g \rangle$ of order $p, x \to g^x$)

 $\vec{s} \cdot \vec{u_t} = \vec{c} \cdot \vec{x_t} + \vec{d} \cdot \vec{y_t}$

- \mathcal{V} erifier (plant-side) prepares $g^{\vec{r}}$, $g^{\vec{a}}$, and $g^{\vec{c}}$, sends them to \mathcal{P} rover (controller).

* $g^{\vec{r}}, g^{\vec{a}}, g^{\vec{c}}$ hide $\vec{r}, \vec{a}, \vec{c}$ from \mathcal{P} (or \mathcal{A}) by DL-assumption.

- \mathcal{P} computes and sends $g_1 := g^{\vec{r} \cdot \vec{x_{t+1}}}$, $g_2 := g^{\vec{a} \cdot \vec{x_t}}$, $g_3 := g^{\vec{c} \cdot \vec{x_t}}$, and $\vec{u_t}'$ to \mathcal{V} .

-
$$\mathcal{V}$$
 checks if $g_1 = g_2 \cdot g^{\vec{b} \cdot \vec{y_t}}$ $(g^x \cdot g^y = g^{x+y \mod p})$
 $g^{\vec{s} \cdot \vec{u_t}'} = g_3 \cdot g^{\vec{d} \cdot \vec{y_t}}$ It is equivalent to the computation _______
given that g_1, g_2, g_3 are as above

Goal: Verify the Computation $\vec{r} \cdot \vec{x_{t+1}} = \vec{a} \cdot \vec{x_t} + \vec{b} \cdot \vec{y_t}$ without $\vec{x_{t+1}}$ nor $\vec{x_t}$ $\vec{s} \cdot \vec{u_t} = \vec{c} \cdot \vec{x_t} + \vec{d} \cdot \vec{y_t}$

II. Let the controller compute the inner-product (but controller must not know $\vec{r}, \vec{a}, \vec{c}$) by applying Group-based Cryptography ($G = \langle g \rangle$ of order $p, x \to g^x$)

- \mathcal{V} erifier (plant-side) prepares $g^{\vec{r}}$, $g^{\vec{a}}$, and $g^{\vec{c}}$, sends them to \mathcal{P} rover (controller).

* $g^{\vec{r}}, g^{\vec{a}}, g^{\vec{c}}$ hide $\vec{r}, \vec{a}, \vec{c}$ from \mathcal{P} (or \mathcal{A}) by DL-assumption.

- \mathcal{P} computes and sends $g_1 := g^{\vec{r} \cdot \vec{x_{t+1}}}$, $g_2 := g^{\vec{a} \cdot \vec{x_t}}$, $g_3 := g^{\vec{c} \cdot \vec{x_t}}$, and $\vec{u_t}'$ to \mathcal{V} .

-
$$\mathcal{V}$$
 checks if $g_1 = g_2 \cdot g^{\vec{b} \cdot \vec{y_t}}$ $(g^x \cdot g^y = g^{x+y \mod p})$
 $g^{\vec{s} \cdot \vec{u_t'}} = g_3 \cdot g^{\vec{d} \cdot \vec{y_t}}$ It is equivalent to the computation ________
given that g_1, g_2, g_3 are as above

Problem! \mathcal{P} (or \mathcal{A}) can pass the check (by \mathcal{V}) with $\overrightarrow{u_t}' \neq \overrightarrow{u_t}$ by sending different g_1, g_2, g_3 from what was asked.

VC for Controller Computation – Third idea

Goal: Enforce \mathcal{P} (or \mathcal{A}) to send $g_1 := g^{\vec{r} \cdot \vec{x_{t+1}}}$, $g_2 := g^{\vec{a} \cdot \vec{x_t}}$, and $g_3 := g^{\vec{c} \cdot \vec{x_t}}$

III. Use the Cryptographic Assumption (n-PKE assumption)

• n-Power Knowledge of Exponent assumption (n-PKE)

- Given $g, g^{\vec{s}}$, and $g^{\alpha \vec{s}}$, if \mathcal{A} outputs g_1 and g_2 s.t. $g_1^{\alpha} = g_2$,

the only way is to generate $g_1 = g^{\vec{s} \cdot \vec{z}}$ for \vec{z} it knows.

VC for Controller Computation – Third idea

Goal: Enforce \mathcal{P} (or \mathcal{A}) to send $g_1 := g^{\vec{r} \cdot \vec{x_{t+1}}}$, $g_2 := g^{\vec{a} \cdot \vec{x_t}}$, and $g_3 := g^{\vec{c} \cdot \vec{x_t}}$

III. Use the Cryptographic Assumption (n-PKE assumption)

- \mathcal{V} erifier (plant-side) sends $g^{\vec{r}}, g^{\vec{a}}, g^{\vec{c}}$, and $g^{\rho \vec{r}}, g^{\alpha \vec{a}}, g^{\gamma \vec{c}}$, and $g^{\vec{a}-\vec{c}}, g^{\delta(\vec{a}-\vec{c})}$ to \mathcal{P} rover (controller)

-
$$\mathcal{P}$$
 computes and sends $g_1 := g^{\vec{r} \cdot \vec{x_{t+1}}}, \quad g'_1 := g^{\vec{p} \cdot \vec{r} \cdot \vec{x_{t+1}}}$
 $g_2 := g^{\vec{a} \cdot \vec{x_t}}, \quad g'_2 := g^{\alpha \vec{a} \cdot \vec{x_t}}$
 $g_3 := g^{\vec{c} \cdot \vec{x_t}}, \quad g'_3 := g^{\gamma \vec{c} \cdot \vec{x_t}}, \quad g_{2-3} := g^{(\vec{a} - \vec{c}) \cdot \vec{x_t}}, \quad g_{2-3}' := g^{\delta(\vec{a} - \vec{c}) \cdot \vec{x_t}}$

- V checks if

$$g_1^{\rho} = g_1', \ g_2^{\alpha} = g_2', \ g_3^{\gamma} = g_3', \ g_{2-3}^{\delta} = g_{2-3}', \ and \ g_2 = g_3 \cdot g_{2-3}$$

(n-PKE assumption) guarantees:

$$g_1 = g^{\vec{r} \cdot \vec{z_1}}, \ g_2 = g^{\vec{a} \cdot \vec{z_2}}, \ g_3 = g^{\vec{c} \cdot \vec{z_3}}, \ g_{2-3}^{(\vec{a}-\vec{c}) \cdot \vec{z_4}} \text{ for some } \vec{z_1}, \vec{z_2}, \vec{z_3}, \vec{z_4}.$$
$$(g_2 = g_3 \cdot g_{2-3}) \text{ guarantees: } \vec{z_2} = \vec{z_3} = \vec{z_4}$$

VC for Controller Computation – Third idea

Goal: Enforce \mathcal{P} (or \mathcal{A}) to send $g_1 := g^{\vec{r} \cdot \vec{x_{t+1}}}$, $g_2 := g^{\vec{a} \cdot \vec{x_t}}$, and $g_3 := g^{\vec{c} \cdot \vec{x_t}}$

III. Use the Cryptographic Assumption (n-PKE assumption)

- \mathcal{V} erifier (plant-side) sends $g^{\vec{r}}, g^{\vec{a}}, g^{\vec{c}}$, and $g^{\rho \vec{r}}, g^{\alpha \vec{a}}, g^{\gamma \vec{c}}$, and $g^{\vec{a}-\vec{c}}, g^{\delta(\vec{a}-\vec{c})}$ to \mathcal{P} rover (controller)

-
$$\mathcal{P}$$
 computes and sends $g_1 := g^{\vec{r} \cdot \vec{x_{t+1}}}, \quad g'_1 \coloneqq g^{\rho \vec{r} \cdot \vec{x_{t+1}}}$
 $g_2 := g^{\vec{a} \cdot \vec{x_t}}, \quad g'_2 \coloneqq g^{\alpha \vec{a} \cdot \vec{x_t}}$
 $g_3 := g^{\vec{c} \cdot \vec{x_t}}, \quad g'_3 \coloneqq g^{\gamma \vec{c} \cdot \vec{x_t}}, \quad g_{2-3} \coloneqq g^{(\vec{a} - \vec{c}) \cdot \vec{x_t}}, \quad g_{2-3}' \coloneqq g^{\delta(\vec{a} - \vec{c}) \cdot \vec{x_t}}$

- V checks if

$$g_1^{\rho} = g_1', \ g_2^{\alpha} = g_2', \ g_3^{\gamma} = g_3', \ g_{2-3}^{\delta} = g_{2-3}', \ \text{and} \ g_2 = g_3 \cdot g_{2-3}$$

(n-PKE assumption) guarantees:

$$g_1 = g^{\vec{r} \cdot \vec{z_1}}, \ g_2 = g^{\vec{a} \cdot \vec{z_2}}, \ g_3 = g^{\vec{c} \cdot \vec{z_3}}, \ g_{2-3}^{(\vec{a} - \vec{c}) \cdot \vec{z_4}} \text{ for some } \vec{z_1}, \vec{z_2}, \vec{z_3}, \vec{z_4}.$$
$$(g_2 = g_3 \cdot g_{2-3}) \text{ guarantees: } \vec{z_2} = \vec{z_3} = \vec{z_4}$$

Problem...? $\overrightarrow{z_1} = \overrightarrow{x_{t+1}}$? and $\overrightarrow{z_2} = \overrightarrow{x_t}$? They should obey system dynamics.

Claim: Enforcing \mathcal{P} (or \mathcal{A}) to send $g_1 = g^{\vec{r} \cdot \vec{z_1}}$, $g_2 = g^{\vec{a} \cdot \vec{z_2}}$, $g_3 = g^{\vec{c} \cdot \vec{z_2}}$ is sufficient for our purpose!

Claim: Enforcing \mathcal{P} (or \mathcal{A}) to send $g_1 = g^{\vec{r} \cdot \vec{z_1}}$, $g_2 = g^{\vec{a} \cdot \vec{z_2}}$, $g_3 = g^{\vec{c} \cdot \vec{z_2}}$ is sufficient for our purpose!

If \mathcal{A} can find $\overrightarrow{z_1}$, $\overrightarrow{z_2}$ and $\overrightarrow{u_t}'$ such that	note: ${\mathcal A}$ knows that
$\vec{r} \cdot \vec{z_1} = \vec{a} \cdot \vec{z_2} + \vec{b} \cdot \vec{y_t}$	$\vec{r} \cdot \overrightarrow{x_{t+1}} = \vec{a} \cdot \overrightarrow{x_t} + \vec{b} \cdot \overrightarrow{y_t}$
$\vec{s} \cdot \vec{u_t}' = \vec{c} \cdot \vec{z_2} + \vec{d} \cdot \vec{y_t}$	$\vec{s} \cdot \vec{u_t} = \vec{c} \cdot \vec{x_t} + \vec{d} \cdot \vec{y_t}$

Then, by subtracting above equations (noting that $\vec{a} \coloneqq \vec{r}^T A$, $\vec{c} \coloneqq \vec{s}^T C$), \mathcal{A} gets

$$\vec{r} \cdot \left((\overrightarrow{z_1} - \overrightarrow{x_{t+1}}) - A(\overrightarrow{z_2} - \overrightarrow{x_t}) \right) = 0$$

$$\vec{s} \cdot \left((\overrightarrow{u_t}' - \overrightarrow{u_t}) - C(\overrightarrow{z_2} - \overrightarrow{x_t}) \right) = 0$$

Claim: Enforcing \mathcal{P} (or \mathcal{A}) to send $g_1 = g^{\vec{r} \cdot \vec{z_1}}$, $g_2 = g^{\vec{a} \cdot \vec{z_2}}$, $g_3 = g^{\vec{c} \cdot \vec{z_2}}$ is sufficient for our purpose!

f $\mathcal A$ can find $\overrightarrow{z_1}, \overrightarrow{z_2}$ and $\overrightarrow{u_t}'$ such that	note: ${\mathcal A}$ knows that
$\vec{r} \cdot \vec{z_1} = \vec{a} \cdot \vec{z_2} + \vec{b} \cdot \vec{y_t}$	$\vec{r} \cdot \overrightarrow{x_{t+1}} = \vec{a} \cdot \overrightarrow{x_t} + \vec{b} \cdot \overrightarrow{y_t}$
$\vec{s} \cdot \vec{u_t}' = \vec{c} \cdot \vec{z_2} + \vec{d} \cdot \vec{y_t}$	$\vec{s} \cdot \vec{u_t} = \vec{c} \cdot \vec{x_t} + \vec{d} \cdot \vec{y_t}$

Then, by subtracting above equations (noting that $\vec{a} \coloneqq \vec{r}^T A$, $\vec{c} \coloneqq \vec{s}^T C$), \mathcal{A} gets

$$\vec{r} \cdot \left((\overrightarrow{z_1} - \overrightarrow{x_{t+1}}) - A(\overrightarrow{z_2} - \overrightarrow{x_t}) \right) = 0$$

$$\vec{s} \cdot \left((\overrightarrow{u_t'} - \overrightarrow{u_t}) - C(\overrightarrow{z_2} - \overrightarrow{x_t}) \right) = 0$$

Since \vec{r} , \vec{s} are hidden (as $g^{\vec{r}}$, $g^{\vec{s}}$) and random,

$$(\overrightarrow{z_1} - \overrightarrow{x_{t+1}}) - A(\overrightarrow{z_2} - \overrightarrow{x_t}) = 0 \& (\overrightarrow{u_t}' - \overrightarrow{u_t}) - C(\overrightarrow{z_2} - \overrightarrow{x_t}) = 0.$$

If not, \mathcal{A} breaks the DL assumption (variant):

Given g and $g^{\vec{x}} \coloneqq (g^{x_1}, g^{x_2}, \dots, g^{x_n})$ $(\vec{x} \leftarrow \mathbb{Z}_p^n)$, \mathcal{A} can not retrieve $\vec{y} \neq \vec{0}$ s.t. $\vec{x} \cdot \vec{y} = 0$

Claim: Enforcing \mathcal{P} (or \mathcal{A}) to send $g_1 = g^{\vec{r} \cdot \vec{z_1}}$, $g_2 = g^{\vec{a} \cdot \vec{z_2}}$, $g_3 = g^{\vec{c} \cdot \vec{z_2}}$ is sufficient for our purpose!

f \mathcal{A} can find $\overrightarrow{z_1}$, $\overrightarrow{z_2}$ and $\overrightarrow{u_t}'$ such that	note: ${\mathcal A}$ knows that
$\vec{r} \cdot \vec{z_1} = \vec{a} \cdot \vec{z_2} + \vec{b} \cdot \vec{y_t}$	$\vec{r} \cdot \overrightarrow{x_{t+1}} = \vec{a} \cdot \overrightarrow{x_t} + \vec{b} \cdot \overrightarrow{y_t}$
$\vec{s} \cdot \vec{u_t}' = \vec{c} \cdot \vec{z_2} + \vec{d} \cdot \vec{y_t}$	$\vec{s} \cdot \vec{u_t} = \vec{c} \cdot \vec{x_t} + \vec{d} \cdot \vec{y_t}$

Then, by subtracting above equations (noting that $\vec{a} \coloneqq \vec{r}^T A$, $\vec{c} \coloneqq \vec{s}^T C$), \mathcal{A} gets

$$\vec{r} \cdot \left((\overrightarrow{z_1} - \overrightarrow{x_{t+1}}) - A(\overrightarrow{z_2} - \overrightarrow{x_t}) \right) = 0$$

$$\vec{s} \cdot \left((\overrightarrow{u_t}' - \overrightarrow{u_t}) - C(\overrightarrow{z_2} - \overrightarrow{x_t}) \right) = 0$$

Since \vec{r} , \vec{s} are hidden (as $g^{\vec{r}}$, $g^{\vec{s}}$) and random,

$$(\overrightarrow{z_1} - \overrightarrow{x_{t+1}}) - A(\overrightarrow{z_2} - \overrightarrow{x_t}) = 0 & (\overrightarrow{u_t}' - \overrightarrow{u_t}) - C(\overrightarrow{z_2} - \overrightarrow{x_t}) = 0.$$
 If $\overrightarrow{z_2} = \overrightarrow{x_t}$, we get $\overrightarrow{z_1} = \overrightarrow{x_{t+1}}$
 $\overrightarrow{u_t'} = \overrightarrow{u_t}$ as desired

If not, \mathcal{A} breaks the DL assumption (variant).

Given g and $g^{\vec{x}} \coloneqq (g^{x_1}, g^{x_2}, \dots, g^{x_n})$ $(\vec{x} \leftarrow \mathbb{Z}_p^n)$, \mathcal{A} can not retrieve $\vec{y} \neq \vec{0}$ s.t. $\vec{x} \cdot \vec{y} = 0$

Claim: Enforcing \mathcal{P} (or \mathcal{A}) to send $g_1 = g^{\vec{r} \cdot \vec{z_1}}$, $g_2 = g^{\vec{a} \cdot \vec{z_2}}$, $g_3 = g^{\vec{c} \cdot \vec{z_2}}$ is sufficient for our purpose!

f \mathcal{A} can find $\overrightarrow{z_1}$, $\overrightarrow{z_2}$ and $\overrightarrow{u_t}'$ such that	note: ${\mathcal A}$ knows that
$\vec{r} \cdot \vec{z_1} = \vec{a} \cdot \vec{z_2} + \vec{b} \cdot \vec{y_t}$	$\vec{r} \cdot \overrightarrow{x_{t+1}} = \vec{a} \cdot \overrightarrow{x_t} + \vec{b} \cdot \overrightarrow{y_t}$
$\vec{s} \cdot \vec{u_t}' = \vec{c} \cdot \vec{z_2} + \vec{d} \cdot \vec{y_t}$	$\vec{s} \cdot \vec{u_t} = \vec{c} \cdot \vec{x_t} + \vec{d} \cdot \vec{y_t}$

Then, by subtracting above equations (noting that $\vec{a} \coloneqq \vec{r}^T A$, $\vec{c} \coloneqq \vec{s}^T C$), \mathcal{A} gets

$$\vec{r} \cdot \left((\overrightarrow{z_1} - \overrightarrow{x_{t+1}}) - A(\overrightarrow{z_2} - \overrightarrow{x_t}) \right) = 0$$

$$\vec{s} \cdot \left((\overrightarrow{u_t}' - \overrightarrow{u_t}) - C(\overrightarrow{z_2} - \overrightarrow{x_t}) \right) = 0$$

Since \vec{r} , \vec{s} are hidden (as $g^{\vec{r}}$, $g^{\vec{s}}$) and random,

$$(\overrightarrow{z_1} - \overrightarrow{x_{t+1}}) - A(\overrightarrow{z_2} - \overrightarrow{x_t}) = 0 \& (\overrightarrow{u_t}' - \overrightarrow{u_t}) - C(\overrightarrow{z_2} - \overrightarrow{x_t}) = 0.$$
 If $\overrightarrow{z_2} = \overrightarrow{x_{t}}$, we get $\overrightarrow{z_1} = \overrightarrow{x_{t+1}}$ as desired

If not, \mathcal{A} breaks the DL assumption (variant).

Given
$$g$$
 and $g^{\vec{x}} \coloneqq (g^{x_1}, g^{x_2}, \dots, g^{x_n})$ $(\vec{x} \leftarrow \mathbb{Z}_p^n)$, \mathcal{A} can not retrieve $\vec{y} \neq \vec{0}$ s.t. $\vec{x} \cdot \vec{y} = 0$

Holds by induction (\mathcal{V} already verified $\vec{x_t}$) Details & Optimization - refer to the paper

Proposed VC for Controller Computation – Summary

Goal: Verify the Controller's Computation, i.e., $\begin{pmatrix} \overline{x_{t+1}} \\ \overline{u_t} \end{pmatrix} = \begin{pmatrix} A & B \\ C & D \end{pmatrix} \begin{pmatrix} \overline{x_t} \\ \overline{y_t} \end{pmatrix}$.

- It suffices to check that $\begin{pmatrix} \vec{r} \cdot \vec{x_{t+1}}' \\ \vec{s} \cdot \vec{u_t}' \end{pmatrix} = \begin{pmatrix} \vec{a} \cdot \vec{x_t} + \vec{b} \cdot \vec{y_t} \\ \vec{c} \cdot \vec{x_t} + \vec{d} \cdot \vec{y_t} \end{pmatrix}$ from Freivalds' algorithm.

- In fact, it suffices to check that $\begin{pmatrix} g_1\\ g^{\vec{s}\cdot\vec{ut'}} \end{pmatrix} = \begin{pmatrix} g_2 \cdot g^{\vec{b}\cdot\vec{yt}}\\ g_3 \cdot g^{\vec{d}\cdot\vec{yt}} \end{pmatrix}$

and that g_1, g_2, g_3 are well-generated from $EK := (g^{\vec{r}}, g^{\vec{a}}, g^{\vec{c}}, g^{\rho\vec{r}}, g^{\alpha\vec{a}}, g^{\gamma\vec{c}}, g^{\vec{a}-\vec{c}}, g^{\delta(\vec{a}-\vec{c})})$.

Proposed VC for Controller Computation – Summary

Goal: Verify the Controller's Computation, i.e., $\begin{pmatrix} \overline{x_{t+1}} \\ \overline{u_t} \end{pmatrix} = \begin{pmatrix} A & B \\ C & D \end{pmatrix} \begin{pmatrix} \overline{x_t} \\ \overline{y_t} \end{pmatrix}$.

- It suffices to check that $\begin{pmatrix} \vec{r} \cdot \vec{x_{t+1}}' \\ \vec{s} \cdot \vec{u_t}' \end{pmatrix} = \begin{pmatrix} \vec{a} \cdot \vec{x_t} + \vec{b} \cdot \vec{y_t} \\ \vec{c} \cdot \vec{x_t} + \vec{d} \cdot \vec{y_t} \end{pmatrix}$ from Freivalds' algorithm.

- In fact, it suffices to check that $\begin{pmatrix} g_1\\ g^{\vec{s}\cdot\vec{u_t}\prime} \end{pmatrix} = \begin{pmatrix} g_2 \cdot g^{\vec{b}\cdot\vec{y_t}}\\ g_3 \cdot g^{\vec{d}\cdot\vec{y_t}} \end{pmatrix}$

and that g_1, g_2, g_3 are well-generated from $EK := (g^{\vec{r}}, g^{\vec{a}}, g^{\vec{c}}, g^{\rho\vec{r}}, g^{\alpha\vec{a}}, g^{\gamma\vec{c}}, g^{\vec{a}-\vec{c}}, g^{\delta(\vec{a}-\vec{c})})$.

• Soundness: If \mathcal{A} can deceive the \mathcal{V} erifier with incorrect signal $\overrightarrow{u_t}' \neq \overrightarrow{u_t}$, then \mathcal{A} breaks one of the cryptographic assumptions (DL or n-PKE)!

Proposed VC for Controller Computation – Summary

Goal: Verify the Controller's Computation, i.e., $\begin{pmatrix} \overline{x_{t+1}} \\ \overline{u_t} \end{pmatrix} = \begin{pmatrix} A & B \\ C & D \end{pmatrix} \begin{pmatrix} \overline{x_t} \\ \overline{y_t} \end{pmatrix}$.

- It suffices to check that $\begin{pmatrix} \vec{r} \cdot \vec{x_{t+1}}' \\ \vec{s} \cdot \vec{u_t}' \end{pmatrix} = \begin{pmatrix} \vec{a} \cdot \vec{x_t} + \vec{b} \cdot \vec{y_t} \\ \vec{c} \cdot \vec{x_t} + \vec{d} \cdot \vec{y_t} \end{pmatrix}$ from Freivalds' algorithm.

- In fact, it suffices to check that $\begin{pmatrix} g_1\\ g^{\vec{s}\cdot\vec{u_t}\prime} \end{pmatrix} = \begin{pmatrix} g_2 \cdot g^{b\cdot\overline{y_t}}\\ g_3 \cdot g^{\vec{d}\cdot\overline{y_t}} \end{pmatrix}$

and that g_1, g_2, g_3 are well-generated from $EK := (g^{\vec{r}}, g^{\vec{a}}, g^{\vec{c}}, g^{\rho\vec{r}}, g^{\alpha\vec{a}}, g^{\gamma\vec{c}}, g^{\vec{a}-\vec{c}}, g^{\delta(\vec{a}-\vec{c})})$.

- Soundness: If \mathcal{A} can deceive the \mathcal{V} erifier with incorrect signal $\overrightarrow{u_t}' \neq \overrightarrow{u_t}$, then \mathcal{A} breaks one of the cryptographic assumptions (DL or n-PKE)!
- Efficiency (# of ops): Verify $(\overrightarrow{u_t}) \ll$ Computation of $\overrightarrow{u_t}$ and $\overrightarrow{x_{t+1}}$

 $\propto |\overrightarrow{u_t}|, |\overrightarrow{y_t}| \\ + \text{ const for checking } g'_i s \\ \propto |\overrightarrow{x_t}| \cdot (|\overrightarrow{x_t}| + |\overrightarrow{y_t}|)$

Conclusion

 Proposed Verifiable Computation enables a plant-side to detect all possible modifications on the control signal of linear dynamic feedback controllers!
 => Secure the system from most adversarial attacks outside the plant-side.

Conclusion

- Proposed Verifiable Computation enables a plant-side to detect all possible modifications on the control signal of linear dynamic feedback controllers!
 Secure the system from most adversarial attacks outside the plant-side.
- On-going / Further Work
 - Implementation
 - With other Cryptographic Assumptions: $DL \rightarrow Post-Quantum$ (Lattices, Hash)
 - More Functionalities:
 - 1) Hiding Controller's Information (e.g., A,B,C,D) via zero-knowledge proof
 - 2) Handling other Dynamic System (w/ additional input from the controller)

Controller signal