
Authenticated Computation of Control Signal
from Dynamic Controllers

Jung Hee Cheon1), Dongwoo Kim 1), Junsoo Kim 2),
Seungbeom Lee 2), Hyungbo Shim 2)

1) IMDARC, Department of Mathematical Sciences, Seoul National University, Korea
2) ASRI, Department of Electrical and Computer Engineering, Seoul National University, Korea

Security Issues on Networked Control System
Networked Control System with Remote Controller

Controller
Sensor signal

Control signal

Control signal

Sensor signal

Problem: plant-side (or) can not always trust control signals.

Networked Control System with Remote Controller

Controller
Sensor signal

Control signal

Control signal

Sensor signal

Compromise on the signal / controller Misbehavior / Failure of the system

Problem: plant-side (or) can not always trust control signals.

Security Issues on Networked Control System

Proposed Solution - Authentication of Control Signals

Proposed solution: Let the plant-side verify the control signal,
i.e., the computation of controller!

How?
Naive Sol: Re-executing the controller computation (burden on the plant-side)

Proposed solution: Let the plant-side verify the control signal,
i.e., the computation of controller!

How?
Naive Sol: Re-executing the controller computation (burden on the plant-side)

Proposed Sol: Adapt the Verifiable Computation (VC) from complexity theory and cryptography

Controller
Sensor signal

Control signal

Plant-side

Proposed Solution - Authentication of Control Signals

Proposed solution: Let the plant-side verify the control signal,
i.e., the computation of controller!

How?
Naive Sol: Re-executing the controller computation (burden on the plant-side)

Proposed Sol: Adapt the Verifiable Computation (VC) from complexity theory and cryptography

- Controller provides a proof that its computation is correct

Controller
Sensor signal

Control signal

Proof
Verify the control signal

with the proof

Plant-side

Proposed Solution - Authentication of Control Signals

Proposed solution: Let the plant-side verify the control signal,
i.e., the computation of controller!

How?
Naive Sol: Re-executing the controller computation (burden on the plant-side)

Proposed Sol: Adapt the Verifiable Computation (VC) from complexity theory and cryptography

- Controller provides a proof that its computation is correct
- : Faster verification than re-execution
- : Overhead on the controller (for generation of the proof)

Controller
Sensor signal

Control signal

Proof
Verify the control signal

with the proof

Plant-side

Proposed Solution - Authentication of Control Signals

Proposed solution: Let the plant-side verify the control signal,
i.e., the computation of controller!

How?
Naive Sol: Re-executing the controller computation (burden on the plant-side)

Proposed Sol: Adapt the Verifiable Computation (VC) from complexity theory and cryptography

- Controller provides a proof that its computation is correct
- : Faster verification than re-execution
- : Overhead on the controller (for generation of the proof) Goal: optimized VC for

Controller Computation

Controller
Sensor signal

Control signal

Proof
Verify the control signal

with the proof

Plant-side

Proposed Solution - Authentication of Control Signals

The Target - Linear Dynamic System (with Integers)

Consider a Linear Dynamic System with Discrete-time Controller
- Controller’s computation

𝑥!"#
𝑢!

= A B
C D

𝑥!
𝑦!

A, B, C, D: matrices over ℝ, 𝑥!: state of the controller at time 𝑡,
�⃗�, 𝑢, �⃗�: vectors over ℝ, 𝑢!: controller signal,

𝑦!: sensor signal.

𝑦!

𝑥!

𝑢!

SensorPlantActuator

Plant-side

Controller

𝑥!"#

Consider a Linear Dynamic System with Discrete-time Controller
- Controller’s computation

𝑥!"#
𝑢!

= A B
C D

𝑥!
𝑦!

A, B, C, D: matrices over ℝ, 𝑥!: state of the controller at time 𝑡,
�⃗�, 𝑢, �⃗�: vectors over ℝ, 𝑢!: controller signal,

𝑦!: sensor signal.

* We can assume that all values are over ℤ with certain bound, i.e., over ℤ- ≔ ⁄ℤ 𝑝ℤ
(Integers modulo a prime 𝑝)

𝑦!

𝑥!

𝑢!

SensorPlantActuator

Plant-side

Controller

𝑥!"#

Conversion of B, C, and D into integer matrices: done by scaling & truncation.
Conversion of A into integer matrix w/o scaling & truncation is needed and is possible.
Details are presented in the session (FrA09.3).

The Target - Linear Dynamic System (with Integers)

Preliminaries

Verifiable Computation & Cryptography

What is Verifiable Computation (VC)?

Goal: Verify the result of delegated computation (𝐹).

Algorithms (𝜆: security parameter):

● KeyGen 𝐹, 𝜆 → 𝐸𝐾! & 𝑉𝐾! ;

generate Evaluation Key & Verification Key for 𝐹

● Compute & Proof Gen 𝐸𝐾! , 𝑥 → (𝑦, 𝜋");

compute 𝑦 = 𝐹(𝑥) and a proof 𝜋"

● Verify (𝑉𝐾! , 𝑥, 𝑦, 𝜋") → 𝑎𝑐𝑐𝑒𝑝𝑡, 𝑟𝑒𝑗𝑒𝑐𝑡

Requirements:

(Soundness) With 𝑦 ≠ 𝐹 𝑥 , an adversary can not forge a proof 𝜋" s.t. Verify 𝑉𝐾! , 𝑥, 𝑦, 𝜋" = 𝑎𝑐𝑐𝑒𝑝𝑡

(Efficiency) The function Verify should be faster than computing 𝑦 = 𝐹(𝑥)

What is Verifiable Computation (VC)?

Goal: Verify the result of delegated computation (𝐹).

Algorithms (𝜆: security parameter):

● KeyGen 𝐹, 𝜆 → 𝐸𝐾! & 𝑉𝐾! ;

generate Evaluation Key & Verification Key for 𝐹

● Compute & Proof Gen 𝐸𝐾! , 𝑥 → (𝑦, 𝜋");

compute 𝑦 = 𝐹(𝑥) and a proof 𝜋"

● Verify (𝑉𝐾! , 𝑥, 𝑦, 𝜋") → 𝑎𝑐𝑐𝑒𝑝𝑡, 𝑟𝑒𝑗𝑒𝑐𝑡

Requirements:

(Soundness) With 𝑦 ≠ 𝐹 𝑥 , an adversary can not forge a proof 𝜋" s.t. Verify 𝑉𝐾! , 𝑥, 𝑦, 𝜋" = 𝑎𝑐𝑐𝑒𝑝𝑡

(Efficiency) The function Verify should be faster than computing 𝑦 = 𝐹(𝑥)

KeyGen 𝐹, 𝜆

𝒱eri;ier 𝑉𝐾! 𝒫rover (𝐸𝐾!)

What is Verifiable Computation (VC)?

Goal: Verify the result of delegated computation (𝐹).

Algorithms (𝜆: security parameter):

● KeyGen 𝐹, 𝜆 → 𝐸𝐾! & 𝑉𝐾! ;

generate Evaluation Key & Verification Key for 𝐹

● Compute & Proof Gen 𝐸𝐾! , 𝑥 → (𝑦, 𝜋");

compute 𝑦 = 𝐹(𝑥) and a proof 𝜋"

● Verify (𝑉𝐾! , 𝑥, 𝑦, 𝜋") → 𝑎𝑐𝑐𝑒𝑝𝑡, 𝑟𝑒𝑗𝑒𝑐𝑡

Requirements:

(Soundness) With 𝑦 ≠ 𝐹 𝑥 , an adversary can not forge a proof 𝜋" s.t. Verify 𝑉𝐾! , 𝑥, 𝑦, 𝜋" = 𝑎𝑐𝑐𝑒𝑝𝑡

(Efficiency) The function Verify should be faster than computing 𝑦 = 𝐹(𝑥)

KeyGen 𝐹, 𝜆

𝒱eri;ier 𝑉𝐾! 𝒫rover (𝐸𝐾!)

Input 𝑥

What is Verifiable Computation (VC)?

Goal: Verify the result of delegated computation (𝐹).

Algorithms (𝜆: security parameter):

● KeyGen 𝐹, 𝜆 → 𝐸𝐾! & 𝑉𝐾! ;

generate Evaluation Key & Verification Key for 𝐹

● Compute & Proof Gen 𝐸𝐾! , 𝑥 → (𝑦, 𝜋");

compute 𝑦 = 𝐹(𝑥) and a proof 𝜋"

● Verify (𝑉𝐾! , 𝑥, 𝑦, 𝜋") → 𝑎𝑐𝑐𝑒𝑝𝑡, 𝑟𝑒𝑗𝑒𝑐𝑡

Requirements:

(Soundness) With 𝑦 ≠ 𝐹 𝑥 , an adversary can not forge a proof 𝜋" s.t. Verify 𝑉𝐾! , 𝑥, 𝑦, 𝜋" = 𝑎𝑐𝑐𝑒𝑝𝑡

(Efficiency) The function Verify should be faster than computing 𝑦 = 𝐹(𝑥)

KeyGen 𝐹, 𝜆

𝒱eri;ier 𝑉𝐾! 𝒫rover (𝐸𝐾!)

Compute
& Proof Gen

Input 𝑥

Result 𝑦
Proof 𝜋$

What is Verifiable Computation (VC)?

Goal: Verify the result of delegated computation (𝐹).

Algorithms (𝜆: security parameter):

● KeyGen 𝐹, 𝜆 → 𝐸𝐾! & 𝑉𝐾! ;

generate Evaluation Key & Verification Key for 𝐹

● Compute & Proof Gen 𝐸𝐾! , 𝑥 → (𝑦, 𝜋");

compute 𝑦 = 𝐹(𝑥) and a proof 𝜋"

● Verify (𝑉𝐾! , 𝑥, 𝑦, 𝜋") → 𝑎𝑐𝑐𝑒𝑝𝑡, 𝑟𝑒𝑗𝑒𝑐𝑡

Requirements:

(Soundness) With 𝑦 ≠ 𝐹 𝑥 , an adversary can not forge a proof 𝜋" s.t. Verify 𝑉𝐾! , 𝑥, 𝑦, 𝜋" = 𝑎𝑐𝑐𝑒𝑝𝑡

(Efficiency) The function Verify should be faster than computing 𝑦 = 𝐹(𝑥)

KeyGen 𝐹, 𝜆

𝒱eri;ier 𝑉𝐾! 𝒫rover (𝐸𝐾!)

Compute
& Proof Gen Verify

Input 𝑥

Result 𝑦
Proof 𝜋$Verify if 𝑦 = 𝐹(𝑥)

Freivalds’ algorithm: a VC for Matrix Multiplication

Goal: Verify a matrix-vector multiplication (�⃗� ∈ ℤ-3 → 𝐹�⃗�) for a matrix 𝐹 ∈ ℤ-4×3

𝒱eri;ier 𝑟, 𝑓 𝒫rover (𝐹)

2. Compute
�⃗� = 𝐹�⃗�

3. Check if
𝑟 ⋅ �⃗�′ = 𝑓 ⋅ �⃗�

1. Input �⃗�

2. Result �⃗�′

0. 𝒱eri;ier prepares 𝑟 ∈ ℤ#$ and 𝑓 ≔ 𝑟%𝐹

Freivalds’ algorithm: a VC for Matrix Multiplication

Goal: Verify a matrix-vector multiplication (�⃗� ∈ ℤ-3 → 𝐹�⃗�) for a matrix 𝐹 ∈ ℤ-4×3

𝒱eri;ier 𝑟, 𝑓 𝒫rover (𝐹)

2. Compute
�⃗� = 𝐹�⃗�

3. Check if
𝑟 ⋅ �⃗�′ = 𝑓 ⋅ �⃗�

1. Input �⃗�

2. Result �⃗�′

0. 𝒱eri;ier prepares 𝑟 ∈ ℤ#$ and 𝑓 ≔ 𝑟%𝐹

Freivalds’ algorithm satisfies:

(Soundness) If �⃗�& ≠ 𝐹�⃗�, the check gives that
𝑟 ⋅ �⃗�& ≠ 𝑓 ⋅ �⃗� with high probability (1 − $

#
)

(Efficiency) Checking if 𝑟 ⋅ �⃗�& = 𝑓 ⋅ �⃗� takes 2𝑛 mults.

Computing �⃗� = 𝐹�⃗� takes 𝑛𝑚 mults.

≪

∵ for nonzero �⃗� ∈ ℤ#$, 𝑟 ⋅ �⃗� = 0 with probability $
#

∗ 𝑟 and 𝑓 must	be	hidden from	𝒫!	

Assume, with 𝜆 (security parameter), computation resource of an adversary 𝒜 is limited by 2' operations.

● Consider a Finite Group 𝐺 = (𝑔((∈ℤ!
, ⋅) of order 𝑝 ≥ 2', then

- for 𝑥, 𝑦 ∈ ℤ#, 𝑔+ ⋅ 𝑔" = 𝑔 +," -./ #

- e.g.) 𝐺 = 2(
(∈ℤ"

⊂ ℤ0 with ⋅ as the multiplication in ℤ0

● Discrete Logarithm assumption (DL)
- Given 𝑔 and 𝑔+ (𝑥 ← ℤ#), 𝒜 can not retrieve 𝑥
- variant: Given 𝑔 and 𝑔+⃗ ≔ (𝑔+# , 𝑔+$, … , 𝑔+%) (�⃗� ← ℤ#$), 𝒜 can not retrieve �⃗� ≠ 0 s. t. �⃗� ⋅ �⃗� = 0

A quick introduction to

Finite Group and Cryptographic Assumptions

Assume, with 𝜆 (security parameter), computation resource of an adversary 𝒜 is limited by 2' operations.

● Consider a Finite Group 𝐺 = (𝑔((∈ℤ!
, ⋅) of order 𝑝 ≥ 2', then

- for 𝑥, 𝑦 ∈ ℤ#, 𝑔+ ⋅ 𝑔" = 𝑔 +," -./ #

- e.g.) 𝐺 = 2(
(∈ℤ"

⊂ ℤ0 with ⋅ as the multiplication in ℤ0

● Discrete Logarithm assumption (DL)
- Given 𝑔 and 𝑔+ (𝑥 ← ℤ#), 𝒜 can not retrieve 𝑥
- variant: Given 𝑔 and 𝑔+⃗ ≔ (𝑔+# , 𝑔+$, … , 𝑔+%) (�⃗� ← ℤ#$), 𝒜 can not retrieve �⃗� ≠ 0 s. t. �⃗� ⋅ �⃗� = 0

A quick introduction to

Finite Group and Cryptographic Assumptions

Proposed VC for Controller Computation

Design Rationale

VC for Controller Computation – First idea

Goal: Verify the Controller’s Computation, i.e., 𝑥&'(𝑢& = A B
C D

𝑥&
𝑦&

I. Apply Freivalds’ Algorithm (Matrix-vector mults → Inner-product of vectors)

VC for Controller Computation – First idea

Goal: Verify the Controller’s Computation, i.e., 𝑥&'(𝑢& = A B
C D

𝑥&
𝑦&

I. Apply Freivalds’ Algorithm (Matrix-vector mults → Inner-product of vectors)

- 𝒱eri>ier (plant-side) prepares 𝑟, 𝑠 and �⃗� ≔ 𝑟%𝐴, 𝑏 ≔ 𝑟%𝐵,
𝑐 ≔ 𝑠%𝐶, 𝑑 ≔ 𝑠%𝐷,

- 𝒫rover (controller) computes and sends 𝑥!"#
& and 𝑢!′ to 𝒱

- 𝒱 checks if
𝑟 ⋅ 𝑥!"#′ = �⃗� ⋅ 𝑥! + 𝑏 ⋅ 𝑦!
𝑠 ⋅ 𝑢!′ = 𝑐 ⋅ 𝑥! + 𝑑 ⋅ 𝑦!

If signals are forged,
i.e., 𝑥!"#

& ≠ 𝑥!"# or 𝑢!
& ≠ 𝑢!

,
then (with high probability),
two equations do not hold!

(Freivalds’ Algorithm)

* 𝑟, 𝑠,�⃗�, �⃗�, 𝑐, 𝑑 must be hidden
from 𝒫 (or 𝒜)

VC for Controller Computation – First idea

Goal: Verify the Controller’s Computation, i.e., 𝑥&'(𝑢& = A B
C D

𝑥&
𝑦&

I. Apply Freivalds’ Algorithm (Matrix-vector mults → Inner-product of vectors)

- 𝒱eri>ier (plant-side) prepares 𝑟, 𝑠 and �⃗� ≔ 𝑟%𝐴, 𝑏 ≔ 𝑟%𝐵,
𝑐 ≔ 𝑠%𝐶, 𝑑 ≔ 𝑠%𝐷,

- 𝒫rover (controller) computes and sends 𝑥!"#
& and 𝑢!′ to 𝒱

- 𝒱 checks if
𝑟 ⋅ 𝑥!"#′ = �⃗� ⋅ 𝑥! + 𝑏 ⋅ 𝑦!
𝑠 ⋅ 𝑢!′ = 𝑐 ⋅ 𝑥! + 𝑑 ⋅ 𝑦!

Problem! The state 𝑥2 must be transferred from the controller to the plant-side at each time 𝑡.

If signals are forged,
i.e., 𝑥!"#

& ≠ 𝑥!"# or 𝑢!
& ≠ 𝑢!

,
then (with high probability),
two equations do not hold!

(Freivalds’ Algorithm)

* 𝑟, 𝑠,�⃗�, �⃗�, 𝑐, 𝑑 must be hidden
from 𝒫 (or 𝒜)

VC for Controller Computation – Second idea
Goal: Verify the Computation 𝑟 ⋅ 𝑥!"# = �⃗� ⋅ 𝑥! + 𝑏 ⋅ 𝑦! without 𝑥QRS nor 𝑥Q

𝑠 ⋅ 𝑢! = 𝑐 ⋅ 𝑥! + 𝑑 ⋅ 𝑦!

II. Let the controller compute the inner-product (but controller must not know 𝑟, �⃗�, 𝑐)
by applying Group-based Cryptography (G = 𝑔 of order 𝒑, 𝑥 → 𝑔T)

VC for Controller Computation – Second idea
Goal: Verify the Computation 𝑟 ⋅ 𝑥!"# = �⃗� ⋅ 𝑥! + 𝑏 ⋅ 𝑦! without 𝑥QRS nor 𝑥Q

𝑠 ⋅ 𝑢! = 𝑐 ⋅ 𝑥! + 𝑑 ⋅ 𝑦!

II. Let the controller compute the inner-product (but controller must not know 𝑟, �⃗�, 𝑐)
by applying Group-based Cryptography (G = 𝑔 of order 𝒑, 𝑥 → 𝑔T)

- 𝒱eri>ier (plant-side) prepares 𝑔(⃗, 𝑔), and 𝑔*⃗, sends them to 𝒫rover (controller).

- 𝒫 computes and sends 𝑔#: = 𝑔(⃗⋅,!"# , 𝑔-: = 𝑔)⋅,! , 𝑔.: = 𝑔*⃗⋅,! , and 𝑢!′ to 𝒱.

- 𝒱 checks if 𝑔# = 𝑔- ⋅ 𝑔/⋅$!

𝑔0⃗⋅1!& = 𝑔. ⋅ 𝑔2⃗⋅$!

* 𝑔*⃗ , 𝑔+, 𝑔,⃗ hide 𝑟, �⃗�, 𝑐 from 𝒫 (or 𝒜) by DL-assumption.

VC for Controller Computation – Second idea
Goal: Verify the Computation 𝑟 ⋅ 𝑥!"# = �⃗� ⋅ 𝑥! + 𝑏 ⋅ 𝑦! without 𝑥QRS nor 𝑥Q

𝑠 ⋅ 𝑢! = 𝑐 ⋅ 𝑥! + 𝑑 ⋅ 𝑦!

II. Let the controller compute the inner-product (but controller must not know 𝑟, �⃗�, 𝑐)
by applying Group-based Cryptography (G = 𝑔 of order 𝒑, 𝑥 → 𝑔T)

- 𝒱eri>ier (plant-side) prepares 𝑔(⃗, 𝑔), and 𝑔*⃗, sends them to 𝒫rover (controller).

- 𝒫 computes and sends 𝑔#: = 𝑔(⃗⋅,!"# , 𝑔-: = 𝑔)⋅,! , 𝑔.: = 𝑔*⃗⋅,! , and 𝑢!′ to 𝒱.

- 𝒱 checks if 𝑔# = 𝑔- ⋅ 𝑔/⋅$!

𝑔0⃗⋅1!& = 𝑔. ⋅ 𝑔2⃗⋅$!
It is equivalent to the computation

given that 𝑔#, 𝑔-, 𝑔. are as above

(𝑔, ⋅ 𝑔$ = 𝑔,"$345 𝒑)

* 𝑔*⃗ , 𝑔+, 𝑔,⃗ hide 𝑟, �⃗�, 𝑐 from 𝒫 (or 𝒜) by DL-assumption.

VC for Controller Computation – Second idea
Goal: Verify the Computation 𝑟 ⋅ 𝑥!"# = �⃗� ⋅ 𝑥! + 𝑏 ⋅ 𝑦! without 𝑥QRS nor 𝑥Q

𝑠 ⋅ 𝑢! = 𝑐 ⋅ 𝑥! + 𝑑 ⋅ 𝑦!

II. Let the controller compute the inner-product (but controller must not know 𝑟, �⃗�, 𝑐)
by applying Group-based Cryptography (G = 𝑔 of order 𝒑, 𝑥 → 𝑔T)

- 𝒱eri>ier (plant-side) prepares 𝑔(⃗, 𝑔), and 𝑔*⃗, sends them to 𝒫rover (controller).

- 𝒫 computes and sends 𝑔#: = 𝑔(⃗⋅,!"# , 𝑔-: = 𝑔)⋅,! , 𝑔.: = 𝑔*⃗⋅,! , and 𝑢!′ to 𝒱.

- 𝒱 checks if 𝑔# = 𝑔- ⋅ 𝑔/⋅$!

𝑔0⃗⋅1!& = 𝑔. ⋅ 𝑔2⃗⋅$!
It is equivalent to the computation

given that 𝑔#, 𝑔-, 𝑔. are as above

Problem! 𝒫 (or 𝒜) can pass the check (by 𝒱) with 𝑢2
& ≠ 𝑢2 by sending different 𝑔3, 𝑔4, 𝑔5 from what was asked.

* 𝑔*⃗ , 𝑔+, 𝑔,⃗ hide 𝑟, �⃗�, 𝑐 from 𝒫 (or 𝒜) by DL-assumption.

(𝑔, ⋅ 𝑔$ = 𝑔,"$345 𝒑)

VC for Controller Computation – Third idea
Goal: Enforce 𝒫 (or 𝒜) to send 𝑔S: = 𝑔W⃗⋅T678 , 𝑔X: = 𝑔Y⋅T6 , and 𝑔Z: = 𝑔[⃗⋅T6

III. Use the Cryptographic Assumption (n-PKE assumption)

● n-Power Knowledge of Exponent assumption (n-PKE)
- Given 𝑔, 𝑔9⃗ , and 𝑔:9⃗, if 𝒜 outputs 𝑔3 and 𝑔4 s. t. 𝑔3: = 𝑔4,

the only way is to generate 𝑔3 = 𝑔9⃗⋅<⃗ for 𝑧 it knows.

VC for Controller Computation – Third idea
Goal: Enforce 𝒫 (or 𝒜) to send 𝑔S: = 𝑔W⃗⋅T678 , 𝑔X: = 𝑔Y⋅T6 , and 𝑔Z: = 𝑔[⃗⋅T6

III. Use the Cryptographic Assumption (n-PKE assumption)

- 𝒱eri>ier (plant-side) sends 𝑔(⃗, 𝑔), 𝑔*⃗, and 𝑔7(⃗, 𝑔8), 𝑔9*⃗, and 𝑔):*⃗, 𝑔;():*⃗) to 𝒫rover (controller)

- 𝒫 computes and sends 𝑔#: = 𝑔(⃗⋅,!"# , 𝑔#& ≔ 𝑔7(⃗⋅,!"#

𝑔-: = 𝑔)⋅,! , 𝑔-& ≔ 𝑔8)⋅,!

𝑔.: = 𝑔*⃗⋅,! , 𝑔.& ≔ 𝑔9*⃗⋅,! ,								𝑔-:. ≔ 𝑔):*⃗ ⋅,! , 𝑔-:.′ ≔ 𝑔;):*⃗ ⋅,!

- 𝒱 checks if
𝑔#
7 = 𝑔#& , 𝑔-8 = 𝑔-& , 𝑔.

9 = 𝑔.& , 𝑔-:.; = 𝑔-:.& , and 𝑔- = 𝑔. ⋅ 𝑔-:.

𝑔# = 𝑔(⃗⋅># , 𝑔- = 𝑔)⋅>$, 𝑔. = 𝑔*⃗⋅>% , 𝑔-:.
):*⃗ ⋅>& for some 𝑧#, 𝑧-, 𝑧., 𝑧?.

(n-PKE assumption) guarantees:

(𝑔- = 𝑔. ⋅ 𝑔-:.) guarantees: 𝑧- = 𝑧. = 𝑧?

VC for Controller Computation – Third idea
Goal: Enforce 𝒫 (or 𝒜) to send 𝑔S: = 𝑔W⃗⋅T678 , 𝑔X: = 𝑔Y⋅T6 , and 𝑔Z: = 𝑔[⃗⋅T6

III. Use the Cryptographic Assumption (n-PKE assumption)

- 𝒱eri>ier (plant-side) sends 𝑔(⃗, 𝑔), 𝑔*⃗, and 𝑔7(⃗, 𝑔8), 𝑔9*⃗, and 𝑔):*⃗, 𝑔;():*⃗) to 𝒫rover (controller)

- 𝒫 computes and sends 𝑔#: = 𝑔(⃗⋅,!"# , 𝑔#& ≔ 𝑔7(⃗⋅,!"#

𝑔-: = 𝑔)⋅,! , 𝑔-& ≔ 𝑔8)⋅,!

𝑔.: = 𝑔*⃗⋅,! , 𝑔.& ≔ 𝑔9*⃗⋅,! ,								𝑔-:. ≔ 𝑔):*⃗ ⋅,! , 𝑔-:.′ ≔ 𝑔;):*⃗ ⋅,!

- 𝒱 checks if
𝑔#
7 = 𝑔#& , 𝑔-8 = 𝑔-& , 𝑔.

9 = 𝑔.& , 𝑔-:.; = 𝑔-:.& , and 𝑔- = 𝑔. ⋅ 𝑔-:.

𝑔# = 𝑔(⃗⋅># , 𝑔- = 𝑔)⋅>$, 𝑔. = 𝑔*⃗⋅>% , 𝑔-:.
):*⃗ ⋅>& for some 𝑧#, 𝑧-, 𝑧., 𝑧?.

(n-PKE assumption) guarantees:

(𝑔- = 𝑔. ⋅ 𝑔-:.) guarantees: 𝑧- = 𝑧. = 𝑧?

Problem…?
𝑧# = 𝑥!"# ? and 𝑧- = 𝑥! ?

They should obey system dynamics.

VC for Controller Computation – Fourth idea
Claim: Enforcing 𝒫 (or 𝒜) to send 𝑔S = 𝑔W⃗⋅^8, 𝑔X = 𝑔Y⋅^=, 𝑔Z = 𝑔[⃗⋅^= is sufficient for our purpose!

VC for Controller Computation – Fourth idea
Claim: Enforcing 𝒫 (or 𝒜) to send 𝑔S = 𝑔W⃗⋅^8, 𝑔X = 𝑔Y⋅^=, 𝑔Z = 𝑔[⃗⋅^= is sufficient for our purpose!

If 𝒜 can find 𝑧#, 𝑧- and 𝑢!
& such that note: 𝒜 knows that

𝑟 ⋅ 𝑧# = �⃗� ⋅ 𝑧- + 𝑏 ⋅ 𝑦! 𝑟 ⋅ 𝑥!"# = �⃗� ⋅ 𝑥! + 𝑏 ⋅ 𝑦!
𝑠 ⋅ 𝑢!′ = 𝑐 ⋅ 𝑧- + 𝑑 ⋅ 𝑦! 𝑠 ⋅ 𝑢! = 𝑐 ⋅ 𝑥! + 𝑑 ⋅ 𝑦!

Then, by subtracting above equations (noting that �⃗� ≔ 𝑟%𝐴, 𝑐 ≔ 𝑠%𝐶),
𝒜 gets

𝑟 ⋅ 𝑧# − 𝑥!"# − 𝐴 𝑧- − 𝑥! = 0
𝑠 ⋅ 𝑢!′ − 𝑢! − 𝐶(𝑧- − 𝑥!) = 0

VC for Controller Computation – Fourth idea
Claim: Enforcing 𝒫 (or 𝒜) to send 𝑔S = 𝑔W⃗⋅^8, 𝑔X = 𝑔Y⋅^=, 𝑔Z = 𝑔[⃗⋅^= is sufficient for our purpose!

If 𝒜 can find 𝑧#, 𝑧- and 𝑢!
& such that note: 𝒜 knows that

𝑟 ⋅ 𝑧# = �⃗� ⋅ 𝑧- + 𝑏 ⋅ 𝑦! 𝑟 ⋅ 𝑥!"# = �⃗� ⋅ 𝑥! + 𝑏 ⋅ 𝑦!
𝑠 ⋅ 𝑢!′ = 𝑐 ⋅ 𝑧- + 𝑑 ⋅ 𝑦! 𝑠 ⋅ 𝑢! = 𝑐 ⋅ 𝑥! + 𝑑 ⋅ 𝑦!

Then, by subtracting above equations (noting that �⃗� ≔ 𝑟%𝐴, 𝑐 ≔ 𝑠%𝐶),
𝒜 gets

𝑟 ⋅ 𝑧# − 𝑥!"# − 𝐴 𝑧- − 𝑥! = 0
𝑠 ⋅ 𝑢!′ − 𝑢! − 𝐶(𝑧- − 𝑥!) = 0

Since 𝑟, 𝑠 are hidden (as 𝑔(⃗, 𝑔0⃗) and random,
𝑧# − 𝑥!"# − 𝐴 𝑧- − 𝑥! = 0 & 𝑢!′ − 𝑢! − 𝐶 𝑧- − 𝑥! = 0.

If not, 𝒜 breaks the DL assumption (variant):
Given 𝑔 and 𝑔(⃗ ≔ (𝑔(! , 𝑔(" , … , 𝑔(#) (�⃗� ← ℤ)*), 𝒜 can not retrieve �⃗� ≠ 0 s. t. �⃗� ⋅ �⃗� = 0

VC for Controller Computation – Fourth idea
Claim: Enforcing 𝒫 (or 𝒜) to send 𝑔S = 𝑔W⃗⋅^8, 𝑔X = 𝑔Y⋅^=, 𝑔Z = 𝑔[⃗⋅^= is sufficient for our purpose!

If 𝒜 can find 𝑧#, 𝑧- and 𝑢!
& such that note: 𝒜 knows that

𝑟 ⋅ 𝑧# = �⃗� ⋅ 𝑧- + 𝑏 ⋅ 𝑦! 𝑟 ⋅ 𝑥!"# = �⃗� ⋅ 𝑥! + 𝑏 ⋅ 𝑦!
𝑠 ⋅ 𝑢!′ = 𝑐 ⋅ 𝑧- + 𝑑 ⋅ 𝑦! 𝑠 ⋅ 𝑢! = 𝑐 ⋅ 𝑥! + 𝑑 ⋅ 𝑦!

Then, by subtracting above equations (noting that �⃗� ≔ 𝑟%𝐴, 𝑐 ≔ 𝑠%𝐶),
𝒜 gets

𝑟 ⋅ 𝑧# − 𝑥!"# − 𝐴 𝑧- − 𝑥! = 0
𝑠 ⋅ 𝑢!′ − 𝑢! − 𝐶(𝑧- − 𝑥!) = 0

Since 𝑟, 𝑠 are hidden (as 𝑔(⃗, 𝑔0⃗) and random,
𝑧# − 𝑥!"# − 𝐴 𝑧- − 𝑥! = 0 & 𝑢!′ − 𝑢! − 𝐶 𝑧- − 𝑥! = 0.

If not, 𝒜 breaks the DL assumption (variant).

If 𝑧- = 𝑥!, we get 𝑧# = 𝑥!"#
𝑢!′ = 𝑢! as desired

Given 𝑔 and 𝑔(⃗ ≔ (𝑔(! , 𝑔(" , … , 𝑔(#) (�⃗� ← ℤ)*), 𝒜 can not retrieve �⃗� ≠ 0 s. t. �⃗� ⋅ �⃗� = 0

VC for Controller Computation – Fourth idea
Claim: Enforcing 𝒫 (or 𝒜) to send 𝑔S = 𝑔W⃗⋅^8, 𝑔X = 𝑔Y⋅^=, 𝑔Z = 𝑔[⃗⋅^= is sufficient for our purpose!

If 𝒜 can find 𝑧#, 𝑧- and 𝑢!
& such that note: 𝒜 knows that

𝑟 ⋅ 𝑧# = �⃗� ⋅ 𝑧- + 𝑏 ⋅ 𝑦! 𝑟 ⋅ 𝑥!"# = �⃗� ⋅ 𝑥! + 𝑏 ⋅ 𝑦!
𝑠 ⋅ 𝑢!′ = 𝑐 ⋅ 𝑧- + 𝑑 ⋅ 𝑦! 𝑠 ⋅ 𝑢! = 𝑐 ⋅ 𝑥! + 𝑑 ⋅ 𝑦!

Then, by subtracting above equations (noting that �⃗� ≔ 𝑟%𝐴, 𝑐 ≔ 𝑠%𝐶),
𝒜 gets

𝑟 ⋅ 𝑧# − 𝑥!"# − 𝐴 𝑧- − 𝑥! = 0
𝑠 ⋅ 𝑢!′ − 𝑢! − 𝐶(𝑧- − 𝑥!) = 0

Since 𝑟, 𝑠 are hidden (as 𝑔(⃗, 𝑔0⃗) and random,
𝑧# − 𝑥!"# − 𝐴 𝑧- − 𝑥! = 0 & 𝑢!′ − 𝑢! − 𝐶 𝑧- − 𝑥! = 0.

If not, 𝒜 breaks the DL assumption (variant).

If 𝑧- = 𝑥!, we get 𝑧# = 𝑥!"#
𝑢!′ = 𝑢! as desired

Holds by induction (𝒱 already veri>ied 𝑥!)
Details & Optimization - refer to the paperGiven 𝑔 and 𝑔(⃗ ≔ (𝑔(! , 𝑔(" , … , 𝑔(#) (�⃗� ← ℤ)*), 𝒜 can not retrieve �⃗� ≠ 0 s. t. �⃗� ⋅ �⃗� = 0

Proposed VC for Controller Computation – Summary

Goal: Verify the Controller’s Computation, i.e., 𝑥&'(𝑢& = A B
C D

𝑥&
𝑦&

.

- It suffices to check that N⃗⋅+-.#&
9⃗⋅O-&

= P⋅+-,Q⋅"-
R⃗⋅+-,S⃗⋅"-

from Freivalds’ algorithm.

- In fact, it suffices to check that e8
eT⋅U6V = e=⋅eW⋅X6

eY⋅eZ⋅X6

and that 𝑔3, 𝑔4, 𝑔5 are well-generated from 𝐸𝐾 ≔ (𝑔N⃗ , 𝑔P , 𝑔R⃗ , 𝑔[N⃗ , 𝑔:P , 𝑔\R⃗ , 𝑔P]R⃗ , 𝑔^ P]R⃗).

Proposed VC for Controller Computation – Summary

Goal: Verify the Controller’s Computation, i.e., 𝑥&'(𝑢& = A B
C D

𝑥&
𝑦&

.

- It suffices to check that N⃗⋅+-.#&
9⃗⋅O-&

= P⋅+-,Q⋅"-
R⃗⋅+-,S⃗⋅"-

from Freivalds’ algorithm.

- In fact, it suffices to check that e8
eT⋅U6V = e=⋅eW⋅X6

eY⋅eZ⋅X6

and that 𝑔3, 𝑔4, 𝑔5 are well-generated from 𝐸𝐾 ≔ (𝑔N⃗ , 𝑔P , 𝑔R⃗ , 𝑔[N⃗ , 𝑔:P , 𝑔\R⃗ , 𝑔P]R⃗ , 𝑔^ P]R⃗).

● Soundness: If 𝒜 can deceive the 𝒱eri;ier with incorrect signal 𝑢2
& ≠ 𝑢2,

then 𝒜 breaks one of the cryptographic assumptions (DL or n-PKE)!

Proposed VC for Controller Computation – Summary

Goal: Verify the Controller’s Computation, i.e., 𝑥&'(𝑢& = A B
C D

𝑥&
𝑦&

.

- It suffices to check that N⃗⋅+-.#&
9⃗⋅O-&

= P⋅+-,Q⋅"-
R⃗⋅+-,S⃗⋅"-

from Freivalds’ algorithm.

- In fact, it suffices to check that e8
eT⋅U6V = e=⋅eW⋅X6

eY⋅eZ⋅X6

and that 𝑔3, 𝑔4, 𝑔5 are well-generated from 𝐸𝐾 ≔ (𝑔N⃗ , 𝑔P , 𝑔R⃗ , 𝑔[N⃗ , 𝑔:P , 𝑔\R⃗ , 𝑔P]R⃗ , 𝑔^ P]R⃗).

● Soundness: If 𝒜 can deceive the 𝒱eri;ier with incorrect signal 𝑢2
& ≠ 𝑢2,

then 𝒜 breaks one of the cryptographic assumptions (DL or n-PKE)!

● Efficiency (# of ops): Verify (𝑢2) ≪ Computation of 𝑢2 and 𝑥2,3

∝ 𝑢! , 𝑦!
+ const for checking 𝑔@&𝑠

∝ 𝑥! ⋅ (|𝑥!| + 𝑦!)

Conclusion

● Proposed Verifiable Computation enables a plant-side to detect all possible
modifications on the control signal of linear dynamic feedback controllers!
=> Secure the system from most adversarial attacks outside the plant-side.

● On-going / Further Work

- Implementation

- With other Cryptographic Assumptions: DL → Post-Quantum (Lattices, Hash)

- More Functionalities:
1) Hiding Controller’s Information (e.g., A,B,C,D) via zero-knowledge proof

2) Handling other Dynamic System (w/ additional input from the controller)

Controller signal

!

Conclusion

● Proposed Verifiable Computation enables a plant-side to detect all possible
modifications on the control signal of linear dynamic feedback controllers!
=> Secure the system from most adversarial attacks outside the plant-side.

● On-going / Further Work

- Implementation

- With other Cryptographic Assumptions: DL → Post-Quantum (Lattices, Hash)

- More Functionalities:
1) Hiding Controller’s Information (e.g., A,B,C,D) via zero-knowledge proof

2) Handling other Dynamic System (w/ additional input from the controller)

Controller signal

!

